Design and Analysis of Convolution Kernels for Tree-Structured Data
نویسندگان
چکیده
منابع مشابه
Kernels for Structured Data
Learning from structured data is becoming increasingly important. However, most prior work on kernel methods has focused on learning from attribute-value data. Only recently have researchers started investigating kernels for structured data. This paper describes how kernel definitions can be simplified by identifying the structure of the data and how kernels can be defined on this structure. We...
متن کاملTree Structured Data Analysis
Classification and regression trees are becoming increasingly popular for partitioning data and identifying local structure in small and large datasets. Classification trees include those models in which the dependent variable (the predicted variable) is categorical. Regression trees include those in which it is continuous. This paper discusses pitfalls in the use of these methods and highlight...
متن کاملKernels for Semi-Structured Data
Semi-structured data such as XML and HTML is attracting considerable attention. It is important to develop various kinds of data mining techniques that can handle semistructured data. In this paper, we discuss applications of kernel methods for semistructured data. We model semi-structured data by labeled ordered trees, and present kernels for classifying labeled ordered trees based on their ta...
متن کاملHash Kernels for Structured Data
We propose hashing to facilitate efficient kernels. This generalizes previous work using sampling and we show a principled way to compute the kernel matrix for data streams and sparse feature spaces. Moreover, we give deviation bounds from the exact kernel matrix. This has applications to estimation on strings and graphs.
متن کاملStructured Lexical Similarity via Convolution Kernels on Dependency Trees
A central topic in natural language processing is the design of lexical and syntactic features suitable for the target application. In this paper, we study convolution dependency tree kernels for automatic engineering of syntactic and semantic patterns exploiting lexical similarities. We define efficient and powerful kernels for measuring the similarity between dependency structures, whose surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Japanese Society for Artificial Intelligence
سال: 2006
ISSN: 1346-0714,1346-8030
DOI: 10.1527/tjsai.21.113